Solid Lipid Nanoparticles (SLN’S) – Trends and Implications in Drug Targeting

Authors

  • Vivek Ranjan University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh -160014, India
  • Saurabh Srivastava University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh -160014, India
  • Honey Goel1 University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh -160014, India
  • Vinay Jindal University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh -160014, India

Keywords:

Colloidal Drug Carriers, Nanoparticles, Drug Targeting, Biodistribution

Abstract

The era of nanotechnology has revolutionized the drug delivery system and persuades new research strategies to flourish. Solid lipid nanoparticles (SLN) has attracted various research groups and companies since the early 1990s, however research in the SLNs is still in its infancy. ‘SLN technology based therapy’ made available a novel and sound platform for therapeutics. Solid lipid nanoparticles have been developed as an important strategy to deliver drugs. These lipid nanoparticles modify drug release, body distribution and kinetics of associated drugs. Other applications of SLNs are tissue/cell targeting of drugs and reduction of unwanted side effects by controlled release. This paper reviews the production techniques, ingredients employed and various applications, also having consideration on various aspects and benefits of solid lipid nanoparticles as colloidal drug carriers.

References

Lakkireddy JS, Adhikari BSR, Dwarkanath ,et

al, Tumoricidal effects of etoposide

incorporated into solid lipid nanoparticles

after intraperitoneal administration in Daltons

lymphoma bearing mice. The AAPS journal

; 8(2)article 29

Maiaa CS, Mehnertb W, Schallerc M,

Kortingc HC, Gyslera A, Haberlanda A,

Schafer-kortinga M. Drug targeting by solid

lipid nanoparticles for dermal use. Journal of

Drug Targeting, 2002; 10:489–495.

Domb AJ. 1993; U.S. Patent, 5188837

Schwarz C, Mehnert W, Lucks JS, Muller RH.

Solid lipid nanoparticles for controlled drug

delivery, J Control Rel. 1994; 30:83-96.

Kante B, Couvreur P, Dubois-Krack G, De

Meester C, Guiot P, Roland M, Speiser P. J.

Pharm. Sci. 1982; 71: 786-791.

Jenning V, Lippacher A, Gohla SH. Medium

scale production of solid lipid nanoparticles

(SLN) by high pressure homogenization. J.

Microencapsul. 2002; 19:1-10.

Lee KE, Cho SH, Lee HB, Jeong SY, Yuk

SH. Microencapsulation of lipid nanoparticles

containing lipophilic drug. J. Microencapsul.

; 20:489–496.

Muller RH, Mehnert W, Lucks JJ, Schwartz

C, Zur Muhlen, A, Weyhers H, Freitas C,

Ruhl D. Eur. J. Pharm. Biopharm. 1995; 41:

Siekmann B, Westesen, K. Melt-homogenized

solid lipid nanoparticles stabilized by the

nonionic surfactant tyloxapol - I. Preparation

and particle size determination. Pharmacol.

Lett. 1994; 3:194–197.

Carsten O, Oliver K, Muller RH. Enzymatic

degradation of dynasan 114 SLN – effect of

surfactants and particle size. Journal of

Nanoparticle Research, 2002; 4: 121–129.

Freitas C, Muller RH. Correlation between

long-term stability of solid lipid nanoparticles

(SLN) and crystallinity of the lipid phase. Eur.

J. Pharm. Biopharm. 1999; 47:125–132.

Zur Muhlen A, Schwarz C, Mehnert W. Solid

lipid nanoparticles (SLN) for controlled drug

delivery - Drug release and release mechanism

Eur. J. Pharm. Biopharm. 1998; 45:149–155.

Reddy LH, Murthy RSR. Etoposide-loaded

nanoparticles made from glyceride lipids:

Formulation, characterization, in vitro drug

release, and stability evaluation.

AAPSPharmSciTech. 005; 6: E158-E166.

Siekmann B, Westesen K. Submicron-sized

parenteral carrier systems based on solid

lipids. Pharmacol. Lett. I. 1992; 123-126.

Mehnert W, Mader K. Solid lipid

nanoparticles: Production, characterization,

applications. Adv. Drug Del. Rev. 2001;

:165-196.

Jenning V, Lippacher A, Gohla SH. Medium

scale production of solid lipid nanoparticles

(SLN) by high pressure homogenization. J.

Microencapsul. 2002, 19: 1-10.

Bekerman T, Golenser J, Domb A.

Cyclosporin nanopartculate lipospheres for

oral administration. J. Pharm. Sci. 2005,

:12-127

Freitas C, Muller RH. Stability determination

of solid lipid nanoparticles SLN® in aqueous

dispersions after addition of the electrolyte. J.

Microencapsul. 1999; 16: 59-71.

Joresa K, Mehnerta W, Drechslerb M, Bunjesc

H,

Johannd C, Madere K. Investigations on the

structure of solid lipid nanoparticles (SLN)

and oil-loaded solid lipid nanoparticles by

photon correlation spectroscopy, field-flow

fractionation and transmission electron

microscopy. J. Control. Rel. 2004; 95: 217-

Schoè N, Zimmermann E, Katzfey U, Hahn H,

Muèller RH, Liesenfeld O. Effect of solid

lipid nanoparticles (SLN) on cytokine

production and the viability of murine

peritoneal macrophages. J. Microencapsul.

; 17: 639- 650.

Wang Y, Wu W. In situ evading of phagocytic

uptake of stealth solid lipid nanoparticles.

Drug Delivery, 2006; 13: 189-192.

Jun H, Shi-wen Z. New research on

development of solid lipid nanoparticles

Journal of Medical Colleges of PLA, 2007;

:385-390.

Wissing SA, Muller RH. Cosmetic

applications of solid lipid nanoparticles (SLN)

Int. J Pharm. 2003; 254:65-68.

Westesen K, Siekmann B, Koch MHJ.

Investigations on the physical state of lipid

nanoparticles by synchrotron radiation X-ray

diffraction, Int. J. Pharm. 1993; 93:189-199.

Goppert TM, Muller RH. Protein adsorption

patterns on poloxamer and poloxaminestabilized solid lipid nanoparticles (SLN). Eur.

J Pharm. Biopharm. 2005; 60: 361–372.

Zara GP, Cavalli R, Bargoni A, Fundaro A,

Vighetto D, Gasco MR. Intravenous

administration to rabbits of non-stealth and

stealth doxorubicin-loaded solid lipid

nanoparticles at increasing concentrations of

stealth agent: Pharmacokinetics and

distribution of doxorubicin in brain and other

tissues. Journal of Drug Targeting, 2002; 10:

–335.

Muller RH, Lucks JS. Arzneistofftraèger aus

festen Lipidteilchen, Feste Lipidnanosphaeren

(SLN). 1996, EP0605497.

Muller RH, Schwarz C, Mehnert W, Lucks JS.

Production of solid lipid nanoparticles (SLN)

for controlled drug delivery. Proc. Int. Symp.

Control. Release Bioact. Mater. 1993; 20:

-481.

Bummer PM. Physical chemical

considerations of lipid-based oral drug

delivery-solid lipid nanoparticles. Review,

Crit. Rev. Ther. Drug. Carrier. Syst. 2004; 21:

-20.

Gasco, MR. 1997. Solid lipid nanospheres

from warm micro-emulsions. Pharm. Tech.

Eur. 9, 52–58.

Zhinan Mei, Huabing Chen, Ting Weng,

Yajiang Yang, Xiangliang Yang. Solid lipid

nanoparticle and microemulsion for topical

delivery of triptolide Eur. J. Pharm. Biopharm.

; 56:189–196.

Serpea L, Catalanob MG, Cavallic R, Ugazioc

E, Boscob O, Canaparoa R, Muntonia E,

Frairiab R, Gascoc MR, Eandia M, Zara GP.

Cytotoxicity of anticancer drugs incorporated

in solid lipid nanoparticles on HT-29

colorectal cancer cell line. Eur. J Pharm.

Biopharm. 2004; 58:673–680.

Joresa K, Mehnerta W, Drechslerb M, Bunjesc

H,

Johannd C, Madere K. Investigations on the

structure of solid lipid nanoparticles (SLN)

and oil-loaded solid lipid nanoparticles by

photon correlation spectroscopy, field-flow

fractionation and transmission electron

microscopy. J. Control. Rel. 2004; 95:217-

Cavalli R, Caputo O, Marengo E, Pattarino F,

Gasco MR. The effects of components of

microemulsions on both size and crystalline

strucure of solid lipid nanoparticles (SLN)

containing a series of model molecules.

Pharmazie, 1998; 53: 392-396.

R.H. Mueller Solid lipid nanoparticles (SLN)

for controlled drug delivery - a review of the

state of the art. Eur. J. Pharm. Biopharm.

; 50:161-177.

Trotta M, Debernardi F, Caputo O.

Preparation of solid lipid nanoparticles by a

solvent emulsification-diffusion technique.

Int. J. Pharm. 2003; 257:153-60.

Heurtault B, Saulnier P, Pech B, Proust JE,

Benoit JP. Physico-chemical stability of

colloidal lipid particles. Biomaterials, 2003;

: 4283–4300.

Souto EB, Muller RH. Investigation of the

factors influencing the incorporation of

clotrimazole in SLN and NLC prepared by hot

high-pressure homogenization. J.

microencapsulation. 2006; 23:377-388.

Bunjes H, Westesen K, Koch MHJ.

Crystallization tendency and polymorphic

transitions in triglyceride nanoparticles. Int. J.

Pharm. 1996; 129:159–75.

Ahlin P, Kristl J, Smid-Kobar J. Optimization

of procedure parameters and physical stability

of solid lipid nanoparticles in dispersions.

Acta Pharm. 1998; 48: 257–267.

Siekmann B, Westesen K. Melt-homogenized

solid lipid nanoparticles stabilized by the

nonionic surfactant tyloxapol- I. Preparation

and particle size determination. Pharmacol.

Lett. 1994; 3:194–197.

Lippacher A, Muller RH, Mader K. Semisolid

SLN dispersions for topical application:

influence of formulation and production

parameters on viscoelastic properties on

viscoelastic properties. Eur. J. Pharm.

Biopharm. 2002; 53:155-160.

Potluri P, Betageri GV. Mixed-micellar

proliposomal systems for enhanced oral

delivery of progesterone. Drug Delivery,

; 13:227–232.

Seeballuck F, Lawless E, Ashford MB,

O’Driscoll CM. Stimulation of triglyceriderich lipoprotein secretion by polysorbate 80:

in vitro and in vivo correlation using caco-2

cells and a cannulated rat intestinal lymphatic

model. Pharm. Res. 2004; 21:2320–2326.

Luo Y, Chen D, Ren L, Zhao X, Qin J. Solid

lipid nanoparticles for enhancing vinpocetine's

oral bioavailability. J. Control. Rel. 2006;

: 53-59.

Venkatesan N, Uchino K, Amagase K, Ito Y,

Shibata N, Takada K. Gastrointestinal patch

system for the delivery of erythropoietin. J.

Control. Rel. 2006; 111:19–26.

Holm R, Mullertz A, Christensen E, Hoy CE,

Kristensen, HG. Comparison of total oral

bioavailability and the lymphatic transport of

halofantrine from three different unsaturated

triglycerides in lymph cannulated conscious

rats. Eur. J. Pharm. Sci. 2001; 14: 331–337.

Driscoll, CMO. Lipid-based formulations for

intestinal lymphatic delivery. Eur. J. Pharm.

Sci. 2002; 5:405–415.

Nishimukai M, Hara H, Aoyama Y. Enteral

administration of soybean lecithin enhanced

lymphatic absorption of triacylglycerol in rats.

Br. J. Nutr. 2003; 90: 565–571.

Zhang YC, Benet LZ. The gut as a barrier to

drug absorption combined role of cytochrome

P450 3A and P-glycoprotein. Clin.

Pharmacokinet. 2001; 40:159–168.

Seeballuck F, Ashford MB, O’Driscoll CM.

The effects of Pluronics block copolymers and

Cremophor EL on intestinal lipoprotein

processing and the potential link with Pglycoprotein in Caco-2 cells. Pharm. Res.

; 20:1085–1092.

Zhang MY, Morrison RA, Chong S.

Commonly used surfactant, Tween 80,

improves absorption of P-glycoprotein

substrate digoxin, in rats. Arch. Pharm. Res.

:26: 768–772.

Orringer EP, Casella JF, Ataga KI, Koshy M,

Adam-Graves P, Luchtman-Jones L, Wun T,

Watanabe M, Shafer F, Kutlar A, Abboud M,

Steinberg M, Adler B, Swerdlow P, Terregino

C, Saccente S, Files B, Ballas S, Brown R,

Wojtowicz-Praga S, Grindel JM. Purified

Poloxamer 188 for treatment of acute vasoocclusive crisis of sickle cell disease. JAMA

; 286: 2099–2106.

Varshney M, Morey TE, Shah DO, Flint JA,

Moudgil BM, Seubert CN, Dennis DM.

Pluronic® microemulsions as nanoreservoirs

for extraction of bupivacaine from normal

saline. J. Am. Chem. Soc. 2004; 126: 5108–

Siebenbrodt I, Keipert S. Poloxamer-systems

as potential opthalmics II. Microemulsions.

Eur. J. Pharm. Biopharm. 1993; 39: 25–30.

Kataoka K, Kwon GS, Yokohama M, Okano

T, Sakurai Y. Block copolymer micelles as

vehicle for drug delivery. J. Control. Rel.

; 24:119–132.

Batrakova EV, Li S, Alakhov VY, Miller DW,

Kabanov AV. Optimal structure requirements

for Pluronic® block copolymers in modifying

P-glycoprotein drug efflux transporter activity

in bovine brain microvessel endothelial cells.

J. Pharmacol. Exp. Ther. 2003; 304:845–854.

Kabanov AV, Batrakova EV, Alakhov VY.

Pluronic® block copolymers as novel polymer

therapeutics for drug and gene delivery. J.

Control. Rel. 2002; 82: 189–212.

Chen Y, Zhang GGZ, Neilly J, Marsh K,

Mawhinney D, Sanzgiri YD. Enhancing the

bioavailability of ABT-963 using solid

dispersion containing Pluronic F-68. Int. J.

Pharm. 2004; 286: 69–80.

Brusewitz C, Schendler A, Funke A, Wagner

T, Lipp R. Novel poloxamer-based

nanoemulsions to enhance the intestinal

absorption of active compounds. Int. J.

Pharm. 2007; 329:173–181.

Batrakova EV, Han HY, Alakhov VY, Miller

DW, Kabanov AV. Effects of Pluronic®

block copolymers on drug absorption in Caco-

cell monolayers. Pharm. Res. 1998; 15:

–855.

Collett JH, Popli H. Poloxamer. In: Kibbe AH.

(Ed.), Handbook of Pharmaceutical

Excipients, 3rd ed. Pharmaceutical Press,

London, 2000; pp.385–388.

Passerini N, Gonzalez-Rodriguez ML,

Cavallari C, Rodriguez L, Albertini B.

Preparation and Characterization of

ibuprofen–poloxamer 188 granules obtained

by melt granulation. Eur. J. Pharm. Sci. 2002;

:71–78.

Seo A, Holm P, Kristensen HG, Schafer T.

The preparation of agglomerates containing

solid dispersions of diazepam by melt

agglomeration in a high shear mixer. Int. J.

Pharm. 2003; 259: 161–171.

Rouchotas C, Cassidy OE, Rowley G.

Comparison of surface modification and solid

dispersion techniques for drug dissolution. Int.

J. Pharm. 2000, 195:1–6.

Wang Y, Yu L, Han L, Sha X, Fang X.

Difunctional Pluronic copolymer micelles for

paclitaxel delivery: synergistic effect of folatemediated targeting and Pluronic-mediated

overcoming multi-drug resistance in tumor

cell lines. Int. J Pharm. 2007; 337: 63-73.

Chutimaworapan S, Ritthidej GC, Yonemochi

E, Oguchi T, Yamamoto K, Effect of water

soluble carriers on dissolution characteristics

of nifedipine solid dispersions. Drug Dev. Ind.

Pharm. 2000; 26:1141–1150.

Newa M. Preparation, characterization and in

vivo evaluation of ibuprofen binary solid

dispersions with poloxamer 188. Int. J. Pharm.

doi:10.1016/j.ijpharm.2007.05.031

Zimmermann E, Muller RH, Mader K.

Influence of different parameters on

reconstitution of lyophilized SLN. Int. J.

Pharm. 2000; 196: 211-213.

Shahgaldian P, Gualbert J, Aissa K, Coleman

AW. A study of the freeze-drying conditions

of calixarene based solid lipid nanoparticles.

Eur. J. Pharm. Biopharm. 2003; 55: 181-184.

Schwarz C, Mehnert W, Lucks JS, Muller RH.

Solid lipid nanoparticles for controlled drug

delivery. J. Control. Rel. 1994; 30: 83-96.

Weyers H. Feste Lipid Nanopartikel (SLN)

fu¨r die gewebsspezifische

ArzneistoffapplikationHerstellung und

Charakterisierung oberfla chenmodifizierter

ForR. mulierungen, Ph.D. Thesis, Free

University of Berlin, 1995.

Almeida AJ, Runge S, Muller RH. Peptideloaded solid lipid nanoparticles (SLN):

influence of production parameters. Int. J.

Pharm. 1997; 149:255–265.

Boistelle R. Fundamentals of nucleation and

crystal growth, in: N. Garti, K. Sato (Eds.),

Crystallization and, Polymorphism of Fats and

Fatty Acids. Marcel Dekker Inc., New York,

Basel, 1988, pp. 189–226.

Maia CS, Mehnert W, Schafer-Korting M.

Solid lipid nanoparticles as drug carriers for

topical glucocorticoids, Int. J. Pharm. 2000;

:165–167.

Jenning V, Schafer-Korting M, Gohla S.

Vitamin A-loaded solid lipid nanoparticles for

topical use: drug release properties, J. Control.

Rel. 2000; 66: 115–126.

Sato K. Crystallization of fats and fatty acids,

in: Garti N, Sato K. (Eds.), Crystallization and

Polymorphism of Fats and Fatty Acids.

Marcel Dekker Inc., New York, Basel, 1988,

pp. 227–266.

Westesen K, Siekmann B. Investigation of the

gel formation of phospholipid-stabilized solid

lipid nanoparticles. Int. J. Pharm. 1997;

:35–45.

Freitas C, Muller RH. Effect of light and

temperature on zeta potential and physical

stability in solid lipid nanoparticle (SLNE)

dispersions. Int. J. Pharm. 1998; 168:221-229.

R.H. Muller, S. Heinemann, Fat emulsions for

parenteral nutrition. III. Lipofundin

MCT/LCT regimens for parenteral nutrition

(TPN) with low electrolyte load, Int. J. Pharm.

(1994) 175–189.

Laggner P. X-ray diffraction of lipids, in:

Hamilton RJ, Cast J (Eds.), Spectral Properties

of Lipids, Sheffield Academic Press,

Sheffield, 1999, pp. 327–367.

Westesen K, Siekmann B, Koch MHJ.

Investigations on the physical state of lipid

nanoparticles by synchrotron radiation X-ray

diffraction. Int. J. Pharm. 1993; 93:189-199.

Heiati H, Tawashi R, Phillips NC. Solid lipid

nanoparticles as drug carriers - II. Plasma

stability and bio-distribution of solid lipid

noparticles containing the lipophilic prodrug

'-azido-3'-deoxythymidine palmitate in mice,

Int. J. Pharm. 1997;149:255-265.

Chen H, Chang X, Du D, Liu, W, Liu J, Weng

T, Yang Y, Xu H, Yang X. Podophyllotoxinloaded solid lipid nanoparticles for epidermal

targeting J. Control. Rel. 2006; 110: 296-306.

Zur Mühlen A, Mehnert W. Drug release and

release mechanism of prednisolone loaded

solid lipid nanoparticles. Pharmazie 1998;

:552.

Levy MY, Benita S. Drug release from

submicronized o/w emulsion: a new in vitro

kinetic evaluation model. Int. J. Pharm.1990;

: 29-37.

Mueller RH, Solid lipid nanoparticles (SLN)

for controlled drug delivery - a review of the

state of the art. Eur. J. Pharm. Biopharm.

; 50:161-177.

Cavalli R, Gasco MR, Chetoni P, Burgalassi

S, Saettone MF. Solid lipid nanoparticles

(SLN) as ocular delivery system for

tobramycin,

Int. J. Pharm. 2002; 15:241-5.

Greenberg HL, Shwayder, TA, Bieszk, N

Fivenson, DP. Clotrimazole/betamethasone

dipropionate: a review of costs and

complications in the treatment of common

cutaneous fungal infections. Pediatric

Dermatology, 2002; 19, pp. 78-81.

Souto EB, Müller RH. The use of SLN® and

NLC® as topical particulate carriers for

imidazole antifungal agents. Pharmazie, 2006;

, pp; 431-437.

Machlin LJ. 1980. Vitamin E—A

comprehensive treatise. New York and Basel:

Marcel Dekker Inc.

Elmadfa J, Bosse W. Vitamin E. Stuttgart:

Wissenschaftliche Verlagsgesellschaft. 1985.

Mei Z, Chen H, Weng T, Yang Y, Yang X.

Solid lipid nanoparticle and microemulsion for

topical delivery of triptolide. Eur. J. Pharm.

Biopharm. 2003; 56:189–196.

Mei Z, Wu Q, Hu S, Li X, Yang X. Triptolide

loaded solid lipid nanoparticle hydrogel for

topical application. Drug Dev. Ind. Pharm.

; 31:161–168.

Gabard B, Bieli E, Lüdi S. Moderne Konzepte

im Sonnenschutz. Swiss Pharm. 1999; 21: 13–

Wissing SA, Muller RH. Solid lipid

nanoparticles as carrier for sunscreens: in vitro

release and in vivo skin penetration. J Control.

Rel. 2002; 81:225-33.

Wissing SA, Müller RH. A novel sunscreen

system based on tocopherol acetate

incorporated into solid lipid nanoparticles

(SLN). Int. J. Cosm. Sci. 2001a; 23: 233–243.

Zur Mühlen A, Schwarz C, Mehnert W. Solid

lipid nanoparticles (SLN) for controlled drug

delivery—drug release and release

mechanism. Eur. J. Pharm. Biopharm. 1998;

:149–155.

Wissing SA, Muller RH. Solid lipid

nanoparticles (SLN)--a novel carrier for UV

blockers. Pharmazie. 2001; 56:783-6.

Jenning V, Gohla Sh. Encapsulation of

retinoids in solid lipid nanoparticles (SLN1)

journal of microencapsulation, 2001; 18:149-

Wissing SA, Lippacher A, Müller RH.

Investigations on the occlusive properties of

solid lipid nanoparticles (SLNTM). J. Cosm.

Sci. 2001; 52: 313–323.

Demirel M, Yazan Y, Mueller RH, Kilicë

F, Bozan B. Formulation and in vitro ± in vivo

evaluation of piribedil solid lipid micro- and

nanoparticles. J. Microencapsul. 2001; 18:

-371.Muller RH,

Runge S, Ravelli V, Mehnert W,

Thunemann AF, Souto EB. Oral

bioavailability of cyclosporine: Solid lipid

nanoparticles (SLN®) versus drug

nanocrystals. Int. J. Pharm. 2006; 317: 82–89.

Pandey R, Sharma S, Khuller GK. Oral

solid lipid nanoparticle-based antitubercular

chemotherapy. Tuberculosis, 2005; 85: 415–

Poutan CW. Lipid formulations for oral

administration of drugs: non-emulsifying and

self-microemulsifying drug delivery system.

Eur. J. Pharm Sci. 2000; 11:S93-S98.

Porter CJH, Charman WN. Intestinal

lymphatic drug transport: an update. Adv.

Drug Deliv. Rev. 2001; 50:21–44.

Videira MA, Botelho MF, Santos AC,

Gouveia LF, Pedroso de Lima JJ. Almeida AJ.

Lymphatic uptake of pulmonary delivered

radiolabelled solid lipid nanoparticles.

Journal of Drug Targeting, 2002; 10: 607–

Wang JX, Sun X, Zhang ZR. Enhanced

brain targeting by synthesis of 3’, 5’-

dioctanoyl-5-fluoro-2’-deoxyuridine and

incorporation into solid lipid nanoparticles.

Eur J Pharm Biopharm. 2002: 54:285-90.

Goppert TM, Muller RH. Polysorbatestabilized solid lipid nanoparticles as colloidal

carriers for intravenous targeting of drugs to

the brain: Comparison of plasma protein

adsorption patterns. Journal of Drug

Targeting, 2005; 13: 179–187.

Douglas SJ, Davis SS, Illum L.

Biodistribution of poly (isobutylcyanoacrylate) nanoparticles in rabbits. Int. J.

Pharm. 1986; 34:145–152.

Senior JH. Fate and behavior of liposomes

in vivo: A review of controlling factors. Crit.

Rev. Ther. Drug Carrier Syst 1987; 3:123–

Gulyaev AE, Gelperina SE, Skidan IN,

Antropov AS, Kivman GY, Kreuter J.

Significant transport of doxorubicin into the

brain with polysorbate 80-coated

nanoparticles. Pharm Res. 1999; 16:1564–

Alyautdin R, Gothier D, Petrov V,

Kharkevich D, Kreuter J. Analgesic activity of

the hexapeptide dalargin adsorbed on

thesurface of polysorbate 80-coated poly

(butyl cyanoacrylate) nanoparticles. Eur. J.

Pharm. Biopharm. 1999; 41:44–48.

Alyautdin RN, Tezikov EB, Ramge P,

Kharkevich DA, Begley DJ, Kreuter J.

Significant entry of tubocurarine into the brain

of rats by adsorption to polysorbate 80-coated

polybutylcyanoacrylate nanoparticles: An in

situ brain perfusion study. J Microencapsul.

; 15:67–74.

Alyautdin RN, Petrov VE, Langer K,

Berthold A, Kharkewich KA, Kreuter J.

Delivery of loperamide across the blood brain

barrier with polysorbate 80 coated

polybutylcyanoacrylate anoparticles. Pharm.

Res. 1997; 14:43-47

Yang SC, Lu LF, Cai Y, Zhu JB, Liang

BW, Yang CZ.

Body distribution in mice of intravenously

injected camptothecin solid lipid nanoparticles

and targeting effect on brain. J Control. Rel.

; 59:299-307.

Yu BT, Sun X, Zhang ZR. Enhanced liver

targeting by synthesis of N1-stearyl-5-Fu and

incorporation into solid lipid nanoparticles.

Arch Pharm Res. 2003; 26:1096-101.

Reddy LH, Bakshi N, Murthy RSR.

Tamoxifen citrate loaded solid lipid

nanoparticles (SLN™): Preparation,

characterization, in vitro drug release and

pharmacokinetic evaluation. Pharm Dev.

Tech. 2006; 11:167–177.

Wang Y, Deng Y, Mao S, Jin S, Wang J,

Dianzhou Bi. Characterization and body

distribution of b-elemene solid lipid

nanoparticles (SLN). Drug Dev. Ind. Pharm.

; 31:769–778.

Chen, DB, Yang T, Wang-Liang LU,

Zhang Q. In vitro and in vivo study of two

types of long-circulating solid lipid

nanoparticles containing paclitaxel. Chem.

Pharm. Bull. 2001; 49:1444—1447.

Downloads

Published

09/30/2010

Issue

Section

Review Article